JDBC

Java Database Connectivity (JDBC):

The JDBC API is a Java API that can access any kind of tabular data, especially data stored in a Relational Database.
JDBC helps you to write Java applications that manage these three programming activities:
  1. Connect to a data source, like a database
  2. Send queries and update statements to the database
  3. Retrieve and process the results received from the database in answer to your query
The following simple code fragment gives a simple example of these three steps:
public void connectToAndQueryDatabase(String username, String password) {

    Connection con = DriverManager.getConnection(
                         "jdbc:myDriver:myDatabase",
                         username,
                         password);

    Statement stmt = con.createStatement();
    ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

    while (rs.next()) {
        int x = rs.getInt("a");
        String s = rs.getString("b");
        float f = rs.getFloat("c");
    }
}

JDBC Product Components

JDBC includes four components:
  1. The JDBC API —  The JDBC™ API provides programmatic access to relational data from the Java™ programming language. Using the JDBC API, applications can execute SQL statements, retrieve results, and propagate changes back to an underlying data source. The JDBC API can also interact with multiple data sources in a distributed, heterogeneous environment.
    The JDBC API is part of the Java platform, which includes the Java™ Standard Edition (Java™ SE ) and the Java™ Enterprise Edition (Java™ EE). The JDBC 4.0 API is divided into two packages: java.sql and javax.sql. Both packages are included in the Java SE and Java EE platforms.
  2. JDBC Driver Manager —  The JDBC DriverManager class defines objects which can connect Java applications to a JDBC driver. DriverManager has traditionally been the backbone of the JDBC architecture. It is quite small and simple.
    The Standard Extension packages javax.naming and javax.sql let you use a DataSource object registered with a Java Naming and Directory Interface™ (JNDI) naming service to establish a connection with a data source. You can use either connecting mechanism, but using a DataSource object is recommended whenever possible.
  3. JDBC Test Suite —  The JDBC driver test suite helps you to determine that JDBC drivers will run your program. These tests are not comprehensive or exhaustive, but they do exercise many of the important features in the JDBC API.
  4. JDBC-ODBC Bridge —  The Java Software bridge provides JDBC access via ODBC drivers. Note that you need to load ODBC binary code onto each client machine that uses this driver. As a result, the ODBC driver is most appropriate on a corporate network where client installations are not a major problem, or for application server code written in Java in a three-tier architecture.
This Trail uses the first two of these these four JDBC components to connect to a database and then build a java program that uses SQL commands to communicate with a test Relational Database. The last two components are used in specialized environments to test web applications, or to communicate with ODBC-aware DBMSs.

Establishing a Connection

First, you need to establish a connection with the data source you want to use. A data source can be a DBMS, a legacy file system, or some other source of data with a corresponding JDBC driver. Typically, a JDBC application connects to a target data source using one of two classes:
  • DriverManager: This fully implemented class connects an application to a data source, which is specified by a database URL. When this class first attempts to establish a connection, it automatically loads any JDBC 4.0 drivers found within the class path. Note that your application must manually load any JDBC drivers prior to version 4.0.
  • DataSource: This interface is preferred over DriverManager because it allows details about the underlying data source to be transparent to your application. A DataSource object's properties are set so that it represents a particular data source. See Connecting with DataSource Objects for more information. For more information about developing applications with the DataSource class, see the latest The Java EE Tutorial.
Note: The samples in this tutorial use the DriverManager class instead of the DataSource class because it is easier to use and the samples do not require the features of the DataSource class.
This page covers the following topics:

Using the DriverManager Class

Connecting to your DBMS with the DriverManager class involves calling the method DriverManager.getConnection. The following method, JDBCTutorialUtilities.getConnection, establishes a database connection:
public Connection getConnection() throws SQLException {

    Connection conn = null;
    Properties connectionProps = new Properties();
    connectionProps.put("user", this.userName);
    connectionProps.put("password", this.password);

    if (this.dbms.equals("mysql")) {
        conn = DriverManager.getConnection(
                   "jdbc:" + this.dbms + "://" +
                   this.serverName +
                   ":" + this.portNumber + "/",
                   connectionProps);
    } else if (this.dbms.equals("derby")) {
        conn = DriverManager.getConnection(
                   "jdbc:" + this.dbms + ":" +
                   this.dbName +
                   ";create=true",
                   connectionProps);
    }
    System.out.println("Connected to database");
    return conn;
}

Overview of SQLException

When JDBC encounters an error during an interaction with a data source, it throws an instance of SQLException as opposed to Exception. (A data source in this context represents the database to which a Connection object is connected.) The SQLException instance contains the following information that can help you determine the cause of the error:
  • A description of the error. Retrieve the String object that contains this description by calling the method SQLException.getMessage.
  • A SQLState code. These codes and their respective meanings have been standardized by ISO/ANSI and Open Group (X/Open), although some codes have been reserved for database vendors to define for themselves. This String object consists of five alphanumeric characters. Retrieve this code by calling the method SQLException.getSQLState.
  • An error code. This is an integer value identifying the error that caused the SQLException instance to be thrown. Its value and meaning are implementation-specific and might be the actual error code returned by the underlying data source. Retrieve the error by calling the method SQLException.getErrorCode.
  • A cause. A SQLException instance might have a causal relationship, which consists of one or more Throwable objects that caused the SQLException instance to be thrown. To navigate this chain of causes, recursively call the method SQLException.getCause until a null value is returned.
  • A reference to any chained exceptions. If more than one error occurs, the exceptions are referenced through this chain. Retrieve these exceptions by calling the method SQLException.getNextException on the exception that was thrown.

Retrieving Exceptions

The following method, JDBCTutorialUtilities.printSQLException outputs the SQLState, error code, error description, and cause (if there is one) contained in the SQLException as well as any other exception chained to it:
public static void printSQLException(SQLException ex) {

    for (Throwable e : ex) {
        if (e instanceof SQLException) {
            if (ignoreSQLException(
                ((SQLException)e).
                getSQLState()) == false) {

                e.printStackTrace(System.err);
                System.err.println("SQLState: " +
                    ((SQLException)e).getSQLState());

                System.err.println("Error Code: " +
                    ((SQLException)e).getErrorCode());

                System.err.println("Message: " + e.getMessage());

                Throwable t = ex.getCause();
                while(t != null) {
                    System.out.println("Cause: " + t);
                    t = t.getCause();
                }
            }
        }
    }
}
For example, if you call the method CoffeesTable.dropTable with Java DB as your DBMS, the table COFFEES does not exist, and you remove the call to JDBCTutorialUtilities.ignoreSQLException, the output will be similar to the following:
SQLState: 42Y55
Error Code: 30000
Message: 'DROP TABLE' cannot be performed on
'TESTDB.COFFEES' because it does not exist.
Instead of outputting SQLException information, you could instead first retrieve the SQLState then process the SQLException accordingly. For example, the method JDBCTutorialUtilities.ignoreSQLException returns true if the SQLState is equal to code 42Y55 (and you are using Java DB as your DBMS), which causes JDBCTutorialUtilities.printSQLException to ignore the SQLException:
public static boolean ignoreSQLException(String sqlState) {

    if (sqlState == null) {
        System.out.println("The SQL state is not defined!");
        return false;
    }

    // X0Y32: Jar file already exists in schema
    if (sqlState.equalsIgnoreCase("X0Y32"))
        return true;

    // 42Y55: Table already exists in schema
    if (sqlState.equalsIgnoreCase("42Y55"))
        return true;

    return false;
}

Retrieving Warnings

SQLWarning objects are a subclass of SQLException that deal with database access warnings. Warnings do not stop the execution of an application, as exceptions do; they simply alert the user that something did not happen as planned. For example, a warning might let you know that a privilege you attempted to revoke was not revoked. Or a warning might tell you that an error occurred during a requested disconnection.
A warning can be reported on a Connection object, a Statement object (including PreparedStatement and CallableStatement objects), or a ResultSet object. Each of these classes has a getWarnings method, which you must invoke in order to see the first warning reported on the calling object. If getWarnings returns a warning, you can call the SQLWarning method getNextWarning on it to get any additional warnings. Executing a statement automatically clears the warnings from a previous statement, so they do not build up. This means, however, that if you want to retrieve warnings reported on a statement, you must do so before you execute another statement.
The following methods from JDBCTutorialUtilities illustrate how to get complete information about any warnings reported on Statement or ResultSet objects:
public static void getWarningsFromResultSet(ResultSet rs)
    throws SQLException {
    JDBCTutorialUtilities.printWarnings(rs.getWarnings());
}

public static void getWarningsFromStatement(Statement stmt)
    throws SQLException {
    JDBCTutorialUtilities.printWarnings(stmt.getWarnings());
}

public static void printWarnings(SQLWarning warning)
    throws SQLException {

    if (warning != null) {
        System.out.println("\n---Warning---\n");

    while (warning != null) {
        System.out.println("Message: " + warning.getMessage());
        System.out.println("SQLState: " + warning.getSQLState());
        System.out.print("Vendor error code: ");
        System.out.println(warning.getErrorCode());
        System.out.println("");
        warning = warning.getNextWarning();
    }
}

No comments:

Post a Comment